**f[state[j, 1], rule[#], max age]
state [ j, i]:
j : another CA
i : present
rule [#] :** Is totalistic (k=3, r=1), and its numbering (#) is given
in Wolfram's book.

f[state[j, 1], rule[#], max age] = 1 | Initialization | |

f[state[j, i], rule[#], max age] = |
Normal growth | |

f[state[j, i], rule[#], max age] = f[state[j - 1, i - 1], rule[#], max age] |
CA-2 sets the state of CA-1 | |

f[state[j, i], rule[#], max age] = f[state[j, i - 1], state[j - 1, i - 1], max age] |
CA-2 sets the rule of CA-1 | Evolution |

f[state[j, i], rule[#], max age] = f[state[j, i - 1], rule[#], state[j - 1, i - 1]] |
CA-2 sets the age at death | Environmrnt |